Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.081
Filter
1.
An Acad Bras Cienc ; 96(2): e20230872, 2024.
Article in English | MEDLINE | ID: mdl-38747792

ABSTRACT

Aiming to compare and update the sand fly fauna of Portão de Pedra site, Sumidouro District, Rio de Janeiro State, Brazil, and considering the environmental changes occurred, the biology and ecology of the local sandfly species were examined five years later as a complementary study carried. Captures were made in the cave, surroundings of cave and forest of the region, from 6 p.m. to 6 a.m. Among the 2323 sandflies of eigth species of the Lutzomyia were captured: L. gasparviannai, L. edwardsi, L. tupynambai, L. hirsuta, L. whitmani, L. migonei, L. intermedia, Lutzomyia. sp and one species of the Brumptomyia Kind: B. brumpti. In 2009 and 2010 were collected 1756 samples from ten species of the former genus and two of the second. L. gasparviannai was predominant, in the three collection sites, in both periods. Five species implicated as vectors of Leishmania: L. intermedia, L. whitmani, L. migonei, L. hirsuta and L. davisi have been collected in the area. Poisson regression and ANOVA were used to perform statistical analysis of species most relevant. The record of L. intermedia and a case of American tegumentary leishmaniasis are relevant to the public health of municipality and of state of Rio de Janeiro.


Subject(s)
Insect Vectors , Psychodidae , Animals , Psychodidae/classification , Brazil , Insect Vectors/classification , Population Density , Female , Male , Seasons , Ecosystem
2.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
3.
Parasit Vectors ; 17(1): 231, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760668

ABSTRACT

BACKGROUND: Insect cell lines play a vital role in many aspects of research on disease vectors and agricultural pests. The tsetse fly Glossina morsitans morsitans is an important vector of salivarian trypanosomes in sub-Saharan Africa and, as such, is a major constraint on human health and agricultural development in the region. METHODS: Here, we report establishment and partial characterisation of a cell line, GMA/LULS61, derived from tissues of adult female G. m. morsitans. GMA/LULS61 cells, grown at 28 °C in L-15 (Leibovitz) medium supplemented with foetal bovine serum and tryptose phosphate broth, have been taken through 23 passages to date and can be split 1:1 at 2-week intervals. Karyotyping at passage 17 revealed a predominantly haploid chromosome complement. Species origin and absence of contaminating bacteria were confirmed by PCR amplification and sequencing of fragments of the COI gene and pan-bacterial 16S rRNA gene respectively. However, PCR screening of RNA extracted from GMA/LULS61 cells confirmed presence of the recently described Glossina morsitans morsitans iflavirus and Glossina morsitans morsitans negevirus, but absence of Glossina pallipides salivary gland hypertrophy virus. GMA/LULS61 cells supported infection and growth of 6/7 different insect-derived strains of the intracellular bacterial symbiont Wolbachia. CONCLUSIONS: The GMA/LULS61 cell line has potential for application in a variety of studies investigating the biology of G. m. morsitans and its associated pathogenic and symbiotic microorganisms.


Subject(s)
Tsetse Flies , Tsetse Flies/parasitology , Animals , Cell Line , Female , RNA, Ribosomal, 16S/genetics , Karyotyping , Insect Vectors/virology
4.
PLoS Negl Trop Dis ; 18(5): e0012165, 2024 May.
Article in English | MEDLINE | ID: mdl-38771858

ABSTRACT

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.


Subject(s)
Bacteria , Phlebotomus , Phylogeny , RNA, Ribosomal, 16S , Saliva , Animals , Phlebotomus/microbiology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Iran , Insect Vectors/microbiology , Insect Vectors/physiology , Female , Microbiota , Leishmaniasis, Cutaneous/transmission , Leishmaniasis, Cutaneous/microbiology , Leishmaniasis, Cutaneous/parasitology , Male
5.
PLoS Biol ; 22(5): e3002625, 2024 May.
Article in English | MEDLINE | ID: mdl-38771885

ABSTRACT

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Subject(s)
Pediculus , Plague , Yersinia pestis , Animals , Yersinia pestis/pathogenicity , Yersinia pestis/physiology , Pediculus/microbiology , Pediculus/physiology , Humans , Plague/transmission , Plague/microbiology , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Bites and Stings/microbiology , Female , Male
6.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
7.
Parasit Vectors ; 17(1): 212, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730488

ABSTRACT

BACKGROUND: As a primary vector of bluetongue virus (BTV) in the US, seasonal abundance and diel flight activity of Culicoides sonorensis has been documented, but few studies have examined how time of host-seeking activity is impacted by environmental factors. This knowledge is essential for interpreting surveillance data and modeling pathogen transmission risk. METHODS: The diel host-seeking activity of C. sonorensis was studied on a California dairy over 3 years using a time-segregated trap baited with CO2. The relationship between environmental variables and diel host-seeking activity (start, peak, and duration of activity) of C. sonorensis was evaluated using multiple linear regression. Fisher's exact test and paired-sample z-test were used to evaluate the seasonal difference and parity difference on diel host-seeking activity. RESULTS: Host-seeking by C. sonorensis began and reached an activity peak before sunset at a higher frequency during colder months relative to warmer months. The time that host-seeking activity occurred was associated low and high daily temperature as well as wind speed at sunset. Colder temperatures and a greater diurnal temperature range were associated with an earlier peak in host-seeking. Higher wind speeds at sunset were associated with a delayed peak in host-seeking and a shortened duration of host-seeking. Parous midges reached peak host-seeking activity slightly later than nulliparous midges, possibly because of the need for oviposition by gravid females before returning to host-seeking. CONCLUSIONS: This study demonstrates that during colder months C. sonorensis initiates host-seeking and reaches peak host-seeking activity earlier relative to sunset, often even before sunset, compared to warmer months. Therefore, the commonly used UV light-baited traps are ineffective for midge surveillance before sunset. Based on this study, surveillance methods that do not rely on light trapping would provide a more accurate estimate of host-biting risk across seasons. The association of environmental factors to host-seeking shown in this study can be used to improve modeling or prediction of host-seeking activity. This study identified diurnal temperature range as associated with host-seeking activity, suggesting that Culicoides may respond to a rapidly decreasing temperature by shifting to an earlier host-seeking time, though this association needs further study.


Subject(s)
Ceratopogonidae , Seasons , Animals , Ceratopogonidae/physiology , Ceratopogonidae/virology , California , Female , Temperature , Dairying , Insect Vectors/physiology , Insect Vectors/virology , Host-Seeking Behavior , Cattle , Environment , Bluetongue virus/physiology , Bluetongue/transmission
8.
Biol Lett ; 20(5): 20240095, 2024 May.
Article in English | MEDLINE | ID: mdl-38774968

ABSTRACT

The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.


Subject(s)
Aphids , Genetic Variation , Insect Vectors , Luteovirus , Plant Diseases , Aphids/virology , Aphids/genetics , Animals , Insect Vectors/virology , Insect Vectors/genetics , Plant Diseases/virology , Luteovirus/genetics , Luteovirus/physiology , Symbiosis
9.
J Invertebr Pathol ; 204: 108122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710321

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.


Subject(s)
Bacterial Proteins , Hemiptera , Pest Control, Biological , Animals , Hemiptera/microbiology , Citrus/microbiology , Insect Vectors , Bacillus thuringiensis/chemistry , Plant Diseases/microbiology , Insecticides
10.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717918

ABSTRACT

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Subject(s)
Plant Diseases , Thysanoptera , Tospovirus , Tospovirus/immunology , Tospovirus/physiology , Tospovirus/genetics , Animals , Thysanoptera/virology , Thysanoptera/immunology , Plant Diseases/virology , Plant Diseases/immunology , Capsicum/virology , Capsicum/immunology , Virus Replication , RNA Interference , Insect Vectors/virology , Insect Vectors/immunology , Gene Expression Profiling , Signal Transduction
11.
Sci Rep ; 14(1): 10285, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704404

ABSTRACT

High pathogenicity avian influenza (HPAI) poses a significant threat to both domestic and wild birds globally. The avian influenza virus, known for environmental contamination and subsequent oral infection in birds, necessitates careful consideration of alternative introduction routes during HPAI outbreaks. This study focuses on blowflies (genus Calliphora), in particular Calliphora nigribarbis, attracted to decaying animals and feces, which migrate to lowland areas of Japan from northern or mountainous regions in early winter, coinciding with HPAI season. Our investigation aims to delineate the role of blowflies as HPAI vectors by conducting a virus prevalence survey in a wild bird HPAI-enzootic area. In December 2022, 648 Calliphora nigribarbis were collected. Influenza virus RT-PCR testing identified 14 virus-positive samples (2.2% prevalence), with the highest occurrence observed near the crane colony (14.9%). Subtyping revealed the presence of H5N1 and HxN1 in some samples. Subsequent collections in December 2023 identified one HPAI virus-positive specimen from 608 collected flies in total, underscoring the potential involvement of blowflies in HPAI transmission. Our observations suggest C. nigribarbis may acquire the HPAI virus from deceased wild birds directly or from fecal materials from infected birds, highlighting the need to add blowflies as a target of HPAI vector control.


Subject(s)
Birds , Influenza in Birds , Animals , Japan/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Birds/virology , Insect Vectors/virology , Calliphoridae , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Feces/virology
12.
Parasit Vectors ; 17(1): 219, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741212

ABSTRACT

BACKGROUND: The main vectors of onchocerciasis in Africa are Simulium damnosum sensu lato, which transmit the causative agent Onchocerca volvulus. The force of transmission is driven by the vector density, hence influencing the disease prevalence and intensity. Onchocerciasis is currently targeted for elimination using mass drug administration (MDA) of ivermectin, a potent microfilaricide. MDA in Cameroon began in 1987 in the Vina Valley, an endemic cross-border area with Chad, known for high vector densities and precontrol endemicity. Evaluations in 2008-2010 in this area showed ongoing transmission, while border areas in Chad were close to interrupting transmission. This study aimed to evaluate transmission in this area after several rounds of MDA since the last evaluation surveys. METHODS: Black flies were collected by human landing catches at seven border sites in Cameroon, twice a week, from August 2021 to March 2022. A fraction of the flies was dissected for parity assessment and identification of Onchocerca larval stages. The transmission indices were estimated. Black fly larvae were also collected from the breeding sites at the fly catching sites and identified to species level by cytotaxonomy. RESULTS: A total of 14,303 female flies were collected, and 6918 were dissected. Of these, 4421 (64.0%) were parous. The total biting rates were high, reaching up to 16,407 bites/person/study period, and transmission potential (third-stage larvae (L3) from head/all L3) were 367/702, 146/506, 51/55, 20/32, 0/3, 0/0, and 0/0 infective larvae/person, respectively, for Mbere-Tchad, Babidan, Hajam/V5, Gor, Djeing, Touboro, and Koinderi. Infectivity rates (L3 from head) were 16.00, 12.75, 5.15, and 4.07 infective females (L3H)/1000 parous flies for Haijam, Mbere-Tchad, Babidan, and Gor, respectively. These values exceed the World Health Organization (WHO) thresholds of ≤ 20 annual transmission potential (ATP) or < 1 infective female/1000 parous females. The major vectors identified were Simulium damnosum sensu stricto, S. squamosum, and for the first time in the area, S. yahense. CONCLUSIONS: More than 20 years of MDA has not eliminated onchocerciasis in the study area; hence, this area is a potential source of reintroduction of onchocerciasis in Chad and would require alternative treatment strategies. Many factors such as MDA efficiency, effectiveness of ivermectin, and cytospecies composition may be contributing to transmission persistence.


Subject(s)
Insect Vectors , Ivermectin , Mass Drug Administration , Onchocerca volvulus , Onchocerciasis , Simuliidae , Onchocerciasis/transmission , Onchocerciasis/epidemiology , Onchocerciasis/drug therapy , Animals , Cameroon/epidemiology , Ivermectin/administration & dosage , Simuliidae/parasitology , Humans , Onchocerca volvulus/drug effects , Onchocerca volvulus/physiology , Insect Vectors/parasitology , Insect Vectors/drug effects , Female , Chad/epidemiology , Larva , Filaricides/administration & dosage , Filaricides/therapeutic use , Male
13.
J Neurol Sci ; 459: 122955, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593523

ABSTRACT

Chikungunya fever is an arboviral illness caused by chikungunya virus (CHIKV) and transmitted by the bite of Aedes aegypti and Aedes albopictus. It is an RNA virus belonging to the genus Alphavirus and family Togaviridae. We present a case series of three patients with chikungunya illness developing para/post-infectious myeloradiculoneuropathy.These patients developed neurological symptoms in the form of bilateral lower limb weakness with sensory and bowel involvement after the recovery from the initial acute episode of chikungunya fever. Clinical examination findings suggested myeloradiculoneuropathy with normal Magnetic Resonance Imaging of the Spine, with the nerve conduction study showing sensorimotor axonal polyneuropathy. All the patients were treated with 1 g of methylprednisolone once a day for five days, and case 2 was given intravenous immunoglobulin also. In the follow-up, cases 1 and 2 showed complete recovery without recurrence, and case 3 did not show improvement at one month.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya Fever/complications , Chikungunya Fever/diagnostic imaging , Chikungunya Fever/drug therapy , Insect Vectors , Chikungunya virus/genetics
14.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564197

ABSTRACT

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Subject(s)
Chagas Disease , Rhodnius , Animals , Female , Gene Editing/methods , Rhodnius/genetics , Rhodnius/parasitology , CRISPR-Cas Systems , Insect Vectors/parasitology , Chagas Disease/genetics , Chagas Disease/parasitology
15.
mBio ; 15(5): e0321123, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564693

ABSTRACT

Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE: Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.


Subject(s)
Cold Temperature , Hemiptera , Oryza , Plant Diseases , Animals , Hemiptera/virology , Plant Diseases/virology , Oryza/virology , Tenuivirus/genetics , Tenuivirus/physiology , Insect Vectors/virology , Insect Vectors/physiology
16.
J Vector Borne Dis ; 61(1): 143-148, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648417

ABSTRACT

BACKGROUND OBJECTIVES: In Brazil, one of the visceral leishmaniasis control measures in urban environments is the elimination of Lutzomyia longipalpis, which occurs through the application of pyrethroid insecticides with residual action in homes and outbuildings. Due to the loss of sensitivity of this vector to these insecticides, the search for more efficient insecticide compounds against L. longipalpis has been intensified. The objective of this work was to evaluate the toxicity of Trixis vauthieri essential oil on adult sandflies of the species L. longipalpis, and identify the phytochemical composition of these essential oils. METHODS: Essential oils from leaves collected from T. vauthieri at different times were obtained at concentrations of 5, 10 and 20 mg/mL. Twenty sandflies were exposed to the essential oils and the mortality was evaluated after 1, 2, 4, 16, 24, 48 and 72 h. The chemical constituents of the essential oil were also identified. RESULTS: The essential oils of T. vauthieri at a concentration of 20 mg/mL were the most toxic to sandflies, reaching a mortality rate of 98.33% and 95%, respectively, after 72 h of exposure. The analysis of chemical constituents revealed the presence of triterpenes and/or steroids, tannins, flavonoids, alkaloids, saponins and coumarins. INTERPRETATION CONCLUSION: The results obtained suggest that T. vauthieri essential oil is fairly promising as an insecticidal potential against L. longipalpis. A more detailed analysis of the oil's phytochemical composition is necessary to identify active and pure compounds that can be used in vector control of visceral leishmaniasis.


Subject(s)
Insect Vectors , Insecticides , Leishmaniasis, Visceral , Oils, Volatile , Psychodidae , Animals , Psychodidae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insecticides/pharmacology , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/transmission , Brazil , Insect Vectors/drug effects , Plant Leaves/chemistry , Female , Plant Oils/pharmacology , Plant Oils/chemistry
17.
PLoS Negl Trop Dis ; 18(4): e0011578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626189

ABSTRACT

BACKGROUND: The insecticide-treated baits known as Tiny Targets are one of the cheapest means of controlling riverine species of tsetse flies, the vectors of the trypanosomes that cause sleeping sickness in humans. Models of the efficacy of these targets deployed near rivers are potentially useful in planning control campaigns and highlighting the principles involved. METHODS AND PRINCIPAL FINDINGS: To evaluate the potential of models, we produced a simple non-seasonal model of the births, deaths, mobility and aging of tsetse, and we programmed it to simulate the impact of seven years of target use against the tsetse, Glossina fuscipes fuscipes, in the riverine habitats of NW Uganda. Particular attention was given to demonstrating that the model could explain three matters of interest: (i) good control can be achieved despite the degradation of targets, (ii) local elimination of tsetse is impossible if invasion sources are not tackled, and (iii) with invasion and target degradation it is difficult to detect any effect of control on the age structure of the tsetse population. CONCLUSIONS: Despite its simplifications, the model can assist planning and teaching, but allowance should be made for any complications due to seasonality and management challenges associated with greater scale.


Subject(s)
Insect Control , Insecticides , Tsetse Flies , Tsetse Flies/physiology , Tsetse Flies/parasitology , Animals , Insect Control/methods , Uganda , Insecticides/pharmacology , Humans , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/epidemiology , Insect Vectors/parasitology , Insect Vectors/physiology
18.
Med Vet Entomol ; 38(2): 216-226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563591

ABSTRACT

Vector control remains one of the best strategies to prevent the transmission of trypanosome infections in humans and livestock and, thus, a good way to achieve the elimination of human African trypanosomiasis and animal African trypanosomiasis. A key prerequisite for the success of any vector control strategy is the accurate identification and correct mapping of tsetse species. In this work, we updated the tsetse fly species identification and distribution in many geographical areas in Cameroon. Tsetse flies were captured from six localities in Cameroon, and their species were morphologically identified. Thereafter, DNA was extracted from legs of each tsetse fly and the length polymorphism of internal transcribed spacer-1 (ITS1) region of each fly was investigated using PCR. ITS1 DNA fragments of each tsetse species were sequenced. The sequences obtained were analysed and compared to those available in GenBank. This enabled to confirm/infirm results of the morphologic identification and then, to establish the phylogenetic relationships between tsetse species. Morphologic features allowed to clearly distinguish all the tsetse species captured in the South Region of Cameroon, that is, Glossina palpalis palpalis, G. pallicera, G. caliginea and G. nigrofusca. In the northern area, G. morsitans submorsitans could also be distinguished from G. palpalis palpalis, G. tachinoides and G. fuscipes, but these three later could not be distinguished with routine morphological characters. The ITS1 length polymorphism was high among most of the studied species and allowed to identify the following similar species with a single PCR, that is, G. palpalis palpalis with 241 or 242 bp and G. tachinoides with 221 or 222 bp, G. fuscipes with 236 or 237 bp. We also updated the old distribution of tsetse species in the areas assessed, highlighting the presence of G. palpalis palpalis instead of G. fuscipes in Mbakaou, or in sympatry with G. morsitans submorsitans in Dodeo (northern Cameroon). This study confirms the presence of G. palpalis palpalis in the Adamawa Region of Cameroon. It highlights the limits of using morphological criteria to differentiate some tsetse species. Molecular tools based on the polymorphism of ITS1 of tsetse flies can differentiate tsetse species through a simple PCR before downstream analyses or vector control planning.


Subject(s)
Insect Vectors , Polymorphism, Genetic , Tsetse Flies , Animals , Cameroon , Tsetse Flies/genetics , Insect Vectors/genetics , Insect Vectors/classification , Animal Distribution , Phylogeny , DNA, Intergenic/genetics , Female , Insect Control , Male , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA
19.
Exp Parasitol ; 261: 108766, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677581

ABSTRACT

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Subject(s)
Aedes , Antioxidants , Culex , Gas Chromatography-Mass Spectrometry , Larva , Mosquito Vectors , Plant Extracts , Psidium , Animals , Psidium/chemistry , Aedes/drug effects , Aedes/enzymology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Culex/drug effects , Culex/enzymology , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Mosquito Vectors/drug effects , Mosquito Vectors/enzymology , Spectroscopy, Fourier Transform Infrared , Elephantiasis, Filarial/prevention & control , Insecticides/pharmacology , Catalase/metabolism , Plant Leaves/chemistry , Superoxide Dismutase/metabolism , Mosquito Control , Dengue/prevention & control , Dengue/transmission , Biological Assay , Glutathione Peroxidase/metabolism , Insect Vectors/drug effects
20.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38630610

ABSTRACT

Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.


Subject(s)
Ceratopogonidae , Erwinia , Humans , Animals , Genomics , Insect Vectors , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...